
 1

Fourteen Ways to Fool Your Synchronizer

Ran Ginosar
VLSI Systems Research Center, Technion—Israel Institute of Technology

Haifa 32000, Israel
[ran@ee.technion.ac.il]

Abstract

Transferring data between mutually asynchronous clock
domains requires safe synchronization. However, the
exact nature of synchronization sometimes eludes
designers, and as a result synchronization circuits get
“optimized” to the point where they do no longer operate
correctly. This paper reviews a number of such cases,
analyzes the causes of the errors, and offers a correct
synchronizer circuit for each case. A correct two-flop
synchronizer is presented. After discussing cases that
avoid synchronization, the following synchronizers are
reviewed: one flop, sneaky path, greedy path, wrong
protocol, global reset, async clear, DFT leakage, pulse,
slow-to-fast, metastability blocker, parallel and shared
flop synchronizers.

1. Introduction

Transferring data between mutually asynchronous
clock domains requires safe synchronization [1-6]. The
operation of synchronization circuits has been recognized
for a long time as being delicate and easy to disturb [1-3,
7-12], but at the same time robust synchronizer design
does guarantee safe operation for all practical purposes.
However, the exact nature of synchronization sometimes
eludes designers, and as a result synchronization circuits
get “optimized” to the point where they do no longer
operate correctly. This paper reviews a number of such
cases, analyzes the causes of the errors, and offers a
correct synchronizer circuit for each case. The author has
encountered those interesting cases while teaching, while
working with various SOC (System on Chip) design
teams, and while reviewing certain papers submitted for
publication.

The paper starts by presenting a (hopefully) correct
two-flop synchronizer. Validation means and tools are
discussed. Section 3 describes the various synchronizers,
analyzes the errors and pitfalls, and offers suggestions.

This paper focuses on the most general
synchronization of two mutually-asynchronous clock
domains. More aggressive synchronization circuits, which
achieve high throughput data transfer between clock

domains having the same or related frequencies, are not
discussed here.

2. A Correct Two Flop Synchronizer

The simplest and safest method for the transfer of data
between two mutually-asynchronous clock domains
requires a two-flop synchronizer [2-4]. A “push”
synchronizer is shown in Figure 1, but the principles apply
also to pull, push-pull, and control-only synchronizers.

SENDER RECEIVER

R

A

Figure 1: A push synchronizer

Bundled data is employed. The “synchronizer”
actually comprises two synchronization circuits that
envelope the data lines, implementing a complete
handshake protocol. The Request (R) and Acknowledge
(A) lines are synchronized by the receiver and sender,
respectively. The settling window T (namely the time
separation between the two clock inputs to the two flops
of the synchronizers) could be a whole clock cycle or a
fraction thereof, and could be different for each side, as
long as the desired reliability is obtained. Synchronizer
reliability is typically expressed in terms of Mean Time
Between Failures [2]:

T

W A D

e
MTBF

T f f

τ

=

where τ is the settling time constant of the flop, TW a
parameter related to its time window of susceptibility, fA
the synchronizer’s clock frequency (the receiver’s clock
frequency for the R synchronizer and the sender’s for the
A synchronizer), and fD is the frequency of pushing data
across the clock domain boundary. Typically, MTBF is
designed to be at least ten times the expected life of the

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03)
1522-8681/03 $17.00 © 2003 IEEE

2

product. If latency is not an issue, T is simply set to be a
whole clock cycle, and for most SOCs it implies MTBF of
many eons.

The two synchronizers connect two simple finite state
machines that implement the required protocol. A four-
phase protocol is specified by means of a generalized STG
in Figure 2, where “DD” means that the data is available
(at the sender), “UU” means that it may be removed, and
“LL” means data latched by the receiver. (A two-phase
protocol may also be employed; the circuits are a bit more
complex [13, 14], and this is typically used in order to
minimize latency on long lines.) The complete logic and
FSM are shown in Figure 3. A send request (V, true for a
single cycle) latches data into REGS and starts the
sender’s FSM. The synchronized request (R2) latches the
data into REGR and triggers the receiver’s FSM. The
receiver is given a single-cycle “data received” (D) signal.
The protocol is sometimes modified so that A is set as
soon as the received data are latched, but removed only
after the receiver has had an opportunity to use the data.

R+

DD

A+A+

UU R-

A-

R+

LL

A+A+

R-

A-

Figure 2: Four-phase handshake push
synchronization protocol STG

To consider the synchronizer’s behavior in cases of
conflicts, assume that T equals a whole clock cycle. Upon
a potential clock-data conflict on R, one of three possible
outcomes may happen (Figure 4):
a. The rising edge of R is sampled high. R2 goes high

on cycle 2, and data is latched into REGR by the
beginning of cycle 3.

b. The rising edge of R is sampled low. Since the
protocol assures that R stays high as long is A is low,
it will be sampled high on cycle 2, when it is surely
stable high. R2 will go high on cycle 3, and data is
latched into REGR by cycle 4.

c. The first flop goes metastable. With a probability of

1-e-T/τ (which is infinitesimally close to 1), the flop
has exited metastability by the next clock, and has
arbitrarily settled to either high or low (the thick
traces of R1 in the figure). If high, then R2 goes high

on cycle 2. If low, it will surely go high on the next
cycle, when the input R is already stable high, and R2
goes high on cycle 3.

A word of caution is due here: Although outcome c
above implies that metastability typically disappears
within a single clock cycle, the second flop is still
required. An exception is discussed in Section 3.2 below.

R
E

G
S

R

A

RX

FSM

R2TX

FSM

A2

V

L

IDLE

REQ/R=1

V

WAIT

A2

IDLE

ACK/A=1

R2 R2

D

F

R1

A1

R
E

G
R

L

A2

Figure 3: Push synchronizer logic and
protocol FSM

CLOCK

R

R1

R2

CYCLE 1 CYCLE 2 CYCLE 3

a

b

c

a

b

c

c

Figure 4: Three synchronization scenarios

A VHDL specification of the synchronizer is shown in
Figure 5. This is a highly sensitive code, where minor
modifications may render the synchronizer useless. Some
such innovative but often fatal modifications are reviewed
in the rest of this paper.

Logic validation tools are typically incapable of
detecting any errors in such synchronizers. When
reasonable logic assumptions are made, many erroneous
synchronizers appear to operate perfectly well.
Synchronizer-specific verification algorithms are required
for this analysis.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03)
1522-8681/03 $17.00 © 2003 IEEE

3

-- TRANSMITTER (inputs V, A, output R)
if rising_edge(tx_clock) then
 A2 <= A1; A1 <= A; -- 2 flop
 A3 <= A2; F <= not A3 and A2; -- 1 shot
 case (tx_fsm_state) is
 when idle =>
 if (V = '1') then
 tx_fsm_state <= req;
 R <= '1';
 end if;
 when req =>
 if (A2 = '1') then
 tx_fsm_state <= waiting;
 R <= '0';
 end if;
 when waiting =>
 if (A2 = '0') then
 tx_fsm_state <= idle;
 end if;
 when others =>
 tx_fsm_state <= idle;
 R <= '0';
 end case;
end if;

-- RECEIVER (input R, output A)
if rising_edge(rx_clock) then
 R2 <= R1; R1 <= R; -- 2 flop
 R3 <= R2; D <= not R3 and R2; -- 1 shot
 case (rx_fsm_state) is
 when idle =>
 if (R2 = '1') then
 rx_fsm_state <= ack;
 A <= '1';
 end if;
 when ack =>
 if (R2 = ‘0') then
 rx_fsm_state <= idle;
 A <= '0';
 end if;
 when others =>
 rx_fsm_state <= idle;
 A <= '0';
 end case;
end if;

Figure 5: Push 2-way 4-phase synchronizer
VHDL specification

One tool has been developed specifically for validating
synchronization. The Avant! Clock Domain Checker [15]
is a decent first attempt at addressing this issue. However,
it has a number of drawbacks: First, the control and data
signals that cross domain boundaries must be named in a
manner that facilitates these checks. Second, it validates
only one-sided transfers and does not examine complete
two-sided protocols and the protocol state machines.
Third, it only validates a limited set of pre-defined rules,
mostly covering a simple two-flop synchronizer and data
lines protected by it; for instance, it does not check the
synchronization of asynchronous reset. Fourth, it only
handles “push” (and control-only) synchronizers, but
neither “pull” nor “push-pull” ones. Another such tool is
@Verifier from @HDL [16].

3. The Interesting Synchronizers

3.1 Avoiding the Synchronizer

The most common synchronization error is the transfer
of a signal from one clock domain into another without
any synchronization. In some cases the designer felt that
failure probability was too low to worry about (he has
learned about MTBF in the range of 10100 years, so why
bother?). In other cases, the receiver operated at a much
higher clock frequency than the sender, and the designer
felt that the receiver would always be fast enough to catch
the signal.

The incoming data is used as a combinational input to
a combinational circuit, which eventually feeds into a flip-
flop. Since the timing of the input is unknown, there is no
way to guarantee the timing of the output of the
combinational circuit. In particular, it may change
simultaneously with the sampling edge of the clock, and
the receiving flip-flop may enter metastability or take
excessively long time to respond, hampering correct
operation of the next stage of logic [2].

How often does the receiving flop enter metastability?
The rate of entering metastability is TW×fD×fC. For a

0.18µm SOC (where TW≈50ps) with a clock domain
operating at 200MHz and receiving data every 1000
cycles, that rate is 2000/sec, namely two metastability
events every millisecond. Ignoring such a high rate does
take some courage!

This error can sometimes evade detection by normal
logic validation tools. Simulations may assume such
timing relations among the different clocks that all timing
constraints are met. Static timing analysis would generate
setup and hold violation warnings for every signal that
crosses domain boundaries, but due to the typically huge
number of such warnings most designers treat them as
chaff and ignore them, assuming that the synchronizers
will handle all those issues anyway. Consequently,
legitimate warnings can easily be overlooked.

The error can be detected by the following clock
domain crossing analysis, which can be performed using
standard path analysis, e.g. as offered by logic
synthesizers and by static timing analyzers. All possible
pairs of clocks must be identified. For each pair, the CAD
tool is made to report all logic paths that begin in a flop
driven by the first clock and end in a flop driven by the
second clock. The resulting list should be studied, either
manually or with an automated script, and every reported
path must be approved. Typically, the crossing lists are
carefully maintained and are used as ‘false-path’
specifications, instructing the analysis tool to ignore cross-
domain paths that are already verified.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03)
1522-8681/03 $17.00 © 2003 IEEE

4

3.2 One Flop Synchronizer

A deceptively effective means of cutting down on the
two-flop synchronizer’s latency is to remove one of the
flops (Figure 6).

R

ASENDER RECEIVER

R

A

Figure 6: One-flop “synchronizer”

The problem comes about, of course, when there is a
clock-data conflict. As explained above, the synchronizing
flop may take an excessively long time to respond [2]. Its
output may be used in a standard combinational logic
stage (the cloud in the figure), whose nominal propagation
delay is typically close to a whole clock cycle. When the
synchronizing flop fails (responding slowly), the input to
the next flop will not be ready in time for the next clock
cycle.

The one-flop synchronizer can be detected by
extending the analysis described above. The added step
should validate that the output of every synchronizing flop
feeds directly into the input of exactly one flop (driven by
the same clock), without any logic in between.

The one-flop synchronizer is acceptable when
designed correctly. If the delay through the combinational
‘cloud’ in Figure 6 is d, the settling time is T-d. If that
time is sufficient to assure the required MTBF, then this
synchronizer is legal.

3.3 Sneaky Path

Occasionally, a signal sneaks through a clock domain
boundary unintentionally and unsynchronized. For
instance, a signal has been moved from one clock domain
to another as part of redesign, and some uses of the signal
in its old domain are overlooked. It has also happened
when a designer was unaware that a specific signal
belonged to a different clock domain. In yet other cases, a
signal S from a different clock domain is synchronized
and renamed S_sync, but the designer has used S rather
than S_sync by mistake.

The situation is similar to case 3.1 above, and so are
the solutions.

3.4 Greedy Path Synchronizer

The designer employed a good two-flop synchronizer,
but decided to save a little latency with the arrival

detector: D= 1 2R R× (Figure 7). This is quite similar to
the one-flop synchronizer: The problem is that D is used

with additional combinational logic, and the timing of that
combinational path is typically designed to fit within a
single clock cycle. But in cases of clock-data conflict of
R, R1 may take longer than the normal flop tPD to
stabilize, and consequently the entire combinational path
from R1 through D and to the last flop fails to converge
during a single cycle. The right solution, obviously, is to

add a flop and set D= 2 3R R× (as in Figure 3).

SENDER RECEIVER

R

R2

D

R1

Figure 7: Greedy path “synchronizer”

3.5 Wrong Protocol

Consider the following example. The sender in a push
synchronizer is a CPU that can be tuned to operate in the
range of 60-100 MHz. The receiver is a communication
modem based on a 55MHz clock. A push synchronizer is
used to transfer data from the CPU to the modem. The
designer has correctly realized that, once R is set, it would
take at most four cycles of the receiver’s clock to latch the
data into REGR (as in Figure 4). Based on the relative
speeds, this would mean up to eight cycles of the faster
sender’s clock. To save time and logic, the designer
eliminated the A line and its synchronizer; instead, he
inserted a nine-cycle delay in the sender’s FSM. After the
delay, R is reset and the transfer is assumed finished.

There were two problems with that novel design. First,
the designer did not realize that he had violated the safety
(or 1-boundedness) requirement of the protocol (namely,
transitions must be acknowledged, or else an STG arc
might accumulate multiple tokens [17, 18]). Although the
data was safely latched into REGR, at times the receiver
was busy doing something else and did not manage to
make use of the data before a new set of data has arrived,
over-writing the old.

Second, while the modem remained at 55MHz, the
CPU in a later chip generation was sped up to 200MHz.
At that rate, nine sender’s clock cycles weren’t enough
any more to cover four modem cycles, and the
synchronizer broke down.

There are other ways by which the protocol can be
violated. A powerful protocol verification algorithm might
provide a useful tool to weed out such innovations.

3.6 Global Reset Synchronizer

In a multi-frequency GALS (Globally Asynchronous,
Locally Synchronous) SOC, a global reset signal is
naturally asynchronous to at least some of the clock

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03)
1522-8681/03 $17.00 © 2003 IEEE

5

domains. The leading edge of the reset signal is harmless,
as it forces all circuits to a known starting state. The
trailing edge, on the other hand, is the culprit in some
chips. During global reset all the various clocks are started
and all PLLs settle into their respective different
frequencies. When the reset is removed, it can happen
simultaneously with the sampling edge of one of the
clocks. The global reset is typically connected into the
asynchronous clear (or preset) input of many flip-flops,
and its trailing edge must respect a setup constraint, or
else the flops may enter metastability.

A safe interface is shown in Figure 8. It belongs with
each of the several clock generators of the SOC. While the
leading edge is transferred without delay (when the clocks
may be inoperative), the trailing edge is synchronized.

RESET

CLOCK

RESET WITH

SYNCHRONIZED

TRAILING EDGE

Figure 8: Global reset synchronizer

3.7 Async Clear Synchronizer

Occasionally (and contrary to the wisdom of typical
synchronous design methodologies) asynchronous clear or
preset of a flop may be employed as part of the logic
(rather than for global reset, as discussed in Section 3.6).
Some designers feel that, since this is an asynchronous
clear, it needs not be synchronized even when it crosses
clock domain boundaries (Figure 9).

The problem is very similar to that described in
Section 3.6: Removal of the asynchronous clear signal
may concur with the rising edge of the receiver’s clock,
potentially leading to metastability. The solution is either
to synchronize the reset signal with two flops, or (when
the leading edge must not be delayed) design an
asymmetric synchronizer as in Figure 10.

CLR

RESET

Figure 9: Asynchronous clear

CLR

RESET

Figure 10: Synchronized-trail clear

3.8 DFT Leakage

Simple production testers may have only a single
clock. To test a GALS SOC on such testers, all clocks are
shorted together. Static faults (such as stuck-at) and some
dynamic faults (speed testing of the individual clock
domains) are properly tested that way. The clock shorts of
course must be ignored during path analysis (by means of
manually assembled ‘false-path’ lists or by instructing the
analysis to ignore all paths that are conditioned upon a
test-enable signal). But certain changes of the design may
result in an error (sneaky) path masked by the list.

The solution is to recheck the entire false-path list as a
final check, after all design changes are completed.

3.9 Pulse Synchronizer

The pulse synchronizer (Figure 11) is designed to pass
a single “pulse” (a logic signal that is set to ‘1’ for only a
single clock cycle) from one clock domain to another. A
pulse on P causes the sender’s flop to toggle. Eventually,
D is set high for a single cycle of the receiver’s clock as a
result.

The designer was lucky to discover the problem when
the circuit was tried on an FPGA, prior to tapeout.
Sometimes the P input was set to ‘1’ for two consecutive
cycles. At other times two pulses came in succession, with
only one cycle in between. In both cases the synchronizer
has generated undesirable results. The astute reader can
easily figure out what they were. The situation was
mended by replacing this with a standard control-only
synchronizer, operating with a standard two—phase
protocol.

SENDER RECEIVER

D

ENP

Figure 11: Pulse “synchronizer”

3.10 Slow-to-Fast Synchronizer

When the sender uses a slower clock than the receiver,
designers can simplify the handshake protocol: The R line,
when set for a single cycle of the sender’s clock, is
sampled by at least two edges of the receiver’s clock. If
the first edge misses, the second one is guaranteed to
sample R. If the first one succeeds, further sampling is
blocked (Figure 12), so that metastability during the
second edge is avoided.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03)
1522-8681/03 $17.00 © 2003 IEEE

6

SLOW

SENDER

FAST

RECEIVER

EN

R

Figure 12: Slow-to-fast “synchronizer”

Such a simplified synchronizer typically works just
fine. Except that SOCs tend to evolve and change clock
frequencies. Sometimes clocks are changed during the
design, when certain frequencies turn out to be too fast. In
other cases, when a new product generation is launched or
when the SOC is ported to a different fabrication process,
slow domains may be sped up, and the assumption of
who’s faster may no longer hold. Hopefully the
assumption has not been forgotten in the meantime, and
the only adverse effect is that the chip needs to undergo a
new logic and physical design, merely due to the
‘optimized’ synchronizer.

3.11 Metastability Blocker

A designer has suggested blocking metastability by the
circuit of Figure 13. RESET clears the SR latch and the
synchronizing flop. When the clock is high, if INPUT
rises, the latch is set. When the clock goes low, the
asynchronous input is blocked and only the SR latch
output is connected to the flop. When the clock rises, it
samples the synchronous output of the latch, rather than
the asynchronous input.

MUX

0

1

R

S
CLR

D Q

INPUT

RESET SYNCHRONIZED
INPUT

CLOCK

Figure 13: Metastability “blocker”

The designer has missed two problem scenarios,
though. If INPUT rises exactly when the clock goes low,
the SR latch can become metastable. It will most likely
settle by the next rising edge of the clock. In other words,
the metastability risk has simply been transferred from the
flop to the latch, and one-half clock cycle is allowed for
settling. If the proper protocol is employed (e.g., INPUT
stays high until acknowledged), the synchronization will
function correctly.

The second scenario is more dangerous. If INPUT
rises exactly when the clock rises, the SR latch will
probably miss it but the flop may become metastable.

While the first scenario seems to be handled properly by
the circuit (in spite of the designer’s ignorance), the latter
case may cause damage in the circuit that follows the flop.

Various “metastability blockers” or circuits that
“eliminate” metastability are repeatedly reinvented and
occasionally get published. Fortunately, most practitioners
have learned to take them with a grain of salt.

3.12 Parallel Synchronizer

A careful designer assumed that more is better and,
instead of using the recommended complex structure for a
push synchronizer, he inserted a separate two-flop
synchronizer on each data line (Figure 14). That scheme
also seems to save one cycle time (no need to wait one full
cycle after R2 is stable and until REGR latches the
incoming data, as in Figure 3).

..
.

Figure 14: Parallel “synchronizer”

This scheme is a yet another prescription for a sure
disaster. On clock-data conflict, each of the several data
synchronizers may end up doing something different:
Some may sample the new data, others may miss it and
retain the old data, while yet others may enter
metastability. Of the metastable ones, some may settle to
‘1’ while others may settle to ‘0’. There is no way of
telling which is which, as all four options are equally
legitimate and possible outcomes.

To emphasize the severity of failure, recall that a
typical single synchronizer may enter metastability twice
every millisecond, as computed in Section 3.1. Thus, a 32
bit parallel synchronizer faces a risk of failure every 16
microseconds!

Another incarnation of this problem employs three
parallel synchronizers and takes a vote of their outputs. Is
this any safer than the non-voting parallel synchronizer?

3.13 Shared Flop Synchronizer

The synchronization handshake protocol is sometimes
implemented with a signaling latch, set by the sender and
cleared by the receiver. A somewhat misleading example
based on two signaling flops has been published by a
leading FPGA vendor (Figure 15). The problem is that the
RECEIVE signal, which is driven by the sender’s clock, is

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03)
1522-8681/03 $17.00 © 2003 IEEE

7

never synchronized by the receiver’s (at least not in the
schematics shown in the publication).

D Q

READY

1

CLR

DQ

ACK

1

CLR

DATA

RECEIVETRANSMIT

Figure 15: Shared flop “synchronizer”

A better scheme for a shared latch synchronizer
(Figure 16) has been shown by Dike [19] and has been
employed successfully in a low-voltage product (low
supply voltage increases the risk of metastability). The
control signals generated by the shared latch are both
carefully synchronized with their respective clocks.

WRITE VALID

DQ DQ D QD Q

RS

Q

WRITE
CLK

ACK

READ VALID

READ
CLK

REQ

Figure 16: A correct shared latch
synchronizer

3.14 Conservative Synchronizer

The careful designer occasionally wishes to be on the
safe side and, when synchronization latency is not an
issue, adds “just a few more stages” to the synchronizer
(Figure 17). While this is not an error, it is interesting to
learn what additional level of safety is thus obtained.
Considering an SOC with two clock domains where the
receiver operates at 200 MHz (a reasonable frequency for

the 0.18µm technology), and where data is exchanged
every ten clock cycles (as a worst case), and assuming

TW=50ps, τ=10ps (all ‘conservative’ numbers), the normal

two-flop MTBF is 500 5 2042 10 10e × = years. This is rather

safe, when we recall that the age of the universe is 1010
years. The added cycle time provides an extra safety

factor of 500e , achieving a more comforting level of 10420
years. Imagine how much better MTBF could have been if
you used four flops, rather than three!

SENDER RECEIVER

R

A

Figure 17: Conservative synchronizer

4. Conclusions

A few examples of synchronization design errors have
been presented and analyzed. As long as there are no fool-
proof algorithms and tools to validate synchronizers, the
rules to safe design should be closely watched. A strict
design methodology and discipline should be enforced,
especially prohibiting arbitrary “improvements” of
synchronizers and shortcuts in their design and
implementation. Optimizations that may impede future
design reuse should be avoided. Knowledgeable rigorous
validation should be carried out to verify that all crossings
of clock domains are understood and legitimate. Global
signals that span multiple domains, such as reset and
clocks, should be examined carefully. Such validation
should be repeated after every design change and before
final design closure.

Present efforts to design synchronizer cell libraries and
to develop rigorous tools for synchronization validation
may help alleviate these issues and assure safe GALS
SOCs.

Synchronization issues may be more difficult to
examine and validate with third-party IP cores, and
especially “hard” cores whose internal logic design is
unknown to the SOC designer. The architect should insist
on at least a complete specification of their synchronizing
circuits.

A certain type of synchronizers has not been dealt with
in this paper, namely fast synchronizers for multi-sync
[20] or mesochronous [4, 5] clock domains. Their design
and validation are more complex and deserve another
paper.

Acknowledgement

The author is grateful to the many imaginative
designers whose innovations ended up in this paper. Their
names are kept in confidence. The anonymous referees
added some interesting examples to this catalog and
helped weed out some of the bugs; the author alone should
be blamed for any remaining mistakes.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03)
1522-8681/03 $17.00 © 2003 IEEE

8

References

[1] J. Jex and C. Dike, "A fast resolving BiNMOS
synchronizer for parallel processor interconnect,"
IEEE Journal of Solid-State Circuits, vol. 30, pp.
133-139, 1995.

[2] C. Dike and E. Burton, "Miller and Noise Effects
in a Synchronizing Flip-Flop," IEEE Journal of
Solid-State Circuits, vol. 34, pp. 849-855, 1999.

[3] D. J. Kinniment, A. Bystrov, and A. Yakovlev,
"Synchronization Circuit Performance," IEEE
Journal of Solid-State Circuits, vol. 37, pp. 202--
209, 2002.

[4] W. J. Dally and J. W. Poulton, Digital System
Engineering(Eds.): Cambridge University Press,
1998.

[5] T. H.-Y. Meng, Synchronization Design for
Digital Systems(Eds.): Kluwer Academic
Publishers, 1991.

[6] D. J. Kinniment and J. V. Woods,
"Synchronization and Arbitration Circuits in
Digital Systems," Proceedings of the IEE, vol.
123, pp. 961--966, 1976.

[7] T. J. Chaney and C. E. Molnar, "Anomalous
Behavior of Synchronizer and Arbiter Circuits,"
IEEE Transactions on Computers, vol. C-22, pp.
421--422, 1973.

[8] M. Pechoucek, "Anomalous Response Times of
Input Synchronizers," IEEE Transactions on
Computers, vol. 25, pp. 133--139, 1976.

[9] W. Fleischhammer and O. Dortok, "The
anomalous behavior of flip-flops in synchronizer
circuits," IEEE Transactions on Computers, vol.
28, pp. 273--276, 1979.

[10] H. J. M. Veendrick, "The Behavior of Flip-Flops
Used as Synchronizers and Prediction of Their
Failure Rate," IEEE Journal of Solid-State
Circuits, vol. 15, pp. 169--176, 1980.

[11] L. Kleeman and A. Cantoni, "Can redundancy
and masking improve the performance of
synchronizers," IEEE Transactions on
Computers, vol. 35, pp. 643--646, 1986.

[12] Y. Semiat and R. Ginosar, "Timing
Measurements of Synchronization Circuits,"
under http://www.ee.technion.ac.il/~ran -->
publications.

[13] P. Day and J. V. Woods, "Investigation into
Micropipeline Latch Design Styles," IEEE

Transactions on VLSI Systems, vol. 3, pp. 264--
272, 1995.

[14] A. Peeters and K. v. Berkel, "Single-Rail
Handshake Circuits," in Asynchronous Design
Methodologies: IEEE Computer Society Press,
1995, pp. 53--62.

[15] "Clock Domain Checker User Manual," Avant!
Corporation v2001.3, 2001.

[16] atHDL, "Multiple Clock Domain Analysis,"
www.athdl.com.

[17] A. V. Yakovlev, "On Limitations and Extensions
of STG model for Designing Asynchronous
Control Circuits," in Proc. International Conf.
Computer Design (ICCD): IEEE Computer
Society Press, 1992, pp. 396--400.

[18] Principles of Asynchronous Circuit Design: A
Systems Perspective, S. Furber (Eds.): Kluwer
Academic Publishers, 2001.

[19] C. Dike, "Sychronization Tutorial," presented at
Sixth International Symposium on Advanced
Research in Asynchronous Circuits and Systems
(ASYNC2000), 2000.

[20] R. Ginosar and R. Kol, "Adaptive
Synchronization," in Proc. International Conf.
Computer Design (ICCD), 1998, pp. 188--189.

Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems (ASYNC�’03)
1522-8681/03 $17.00 © 2003 IEEE

