
Linux Driver for Audio
Lab 5 Milestone 1 & 2



What our driver needs to do:

• Be notified of hardware in the system (Milestone 1)
• Allow user code to talk to it (Milestone 1)
• Talk to the hardware (Milestone 2)
• Handle interrupts from the hardware (Milestone 2)
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What our driver needs to do:

• Be notified of hardware in the system (Milestone 1)
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User Code Needs to Talk to Driver

End Goal: Create a device file (/dev/xxx) that we can read() and write() 
to.   (Recall how you used  /dev/uio)

The device file (/dev/xxx) is an interface to a character device. 

Steps:
1. Create a character device 
2. Create a device file
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Driver needs to talk to the hardware

1. Need to figure out physical address

2. Need to reserve the physical address

3. Need to get a pointer (virtual address) to the physical address



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

Audio 
CODEC

Userspace

Kernelspace

int major_num;
struct class * class

read(){
 …
 …
}

write(){
 …
 …
}

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int minor_num;

read()
write()

Device 
File

Device 
File

struct cdev cdev;

irq



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

phys_addr_t phys_addr;

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

physical addr
Audio 

CODEC

Userspace

Kernelspace

platform_get_resource(struct plaform_device * dev, IORESOURCE_MEM, 0);

int major_num;
struct class * class

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int minor_num;

read()
write()

Device 
File

Device 
File

struct cdev cdev;

irq

read(){
 …
 …
}

write(){
 …
 …
}



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

phys_addr_t phys_addr;

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

physical addr
Audio 

CODEC

Userspace

Kernelspace

request_mem_region(phys_addr, size, MODULE_NAME);

int major_num;
struct class * class

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int minor_num;

read()
write()

Device 
File

Device 
File

struct cdev cdev;

irq

read(){
 …
 …
}

write(){
 …
 …
}



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

physical addr
Audio 

CODEC

Userspace

Kernelspace

virt_addr = ioremap(phys_addr, size);

int major_num;
struct class * class

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int minor_num;

read()
write()

Device 
File

Device 
File

struct cdev cdev;

irq

read(){
 …
 …
}

write(){
 …
 …
} u32* virt_addr;

phys_addr_t phys_adr;



Driver needs to talk to the hardware

1. Need to figure out physical address

2. Need to reserve the physical address

3. Need to get a pointer (virtual address) to the physical address

4. Talk to the hardware with:
• iowrite32 (value, virt_addr + offset)
• ioread32(virt_addr + offset)



Driver Needs to Handle Interrupts
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Driver Needs to Handle Interrupts

1. Get IRQ Number

2. Register Interrupt Handler with Linux
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One last thing…
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Before you actually send data to the CODEC chip, you need to configure it via I2C.  I have 
provided you with a userspace library to do this.  Run it before loading your driver.
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