
Linux Driver for Audio
Lab 5 Milestone 1 & 2



What our driver needs to do:

• Be notified of hardware in the system (Milestone 1)
• Allow user code to talk to it (Milestone 1)
• Talk to the hardware (Milestone 2)
• Handle interrupts from the hardware (Milestone 2)



7

Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio ControllerAudio 
CODEC

Userspace

Kernelspace



What our driver needs to do:

• Be notified of hardware in the system (Milestone 1)
• Allow user code to talk to it (Milestone 1)
• Talk to the hardware (Milestone 2)
• Handle interrupts from the hardware (Milestone 2)



7

Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Audio 
CODEC

Userspace

Kernelspace

irq



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

Audio 
CODEC

Userspace

Kernelspace

irq

platform_driver_register(struct platform_driver *)



What our driver needs to do:

• Be notified of hardware in the system (Milestone 1)
• Allow user code to talk to it (Milestone 1)
• Talk to the hardware (Milestone 2)
• Handle interrupts from the hardware (Milestone 2)



User Code Needs to Talk to Driver

End Goal: Create a device file (/dev/xxx) that we can read() and write() 
to.   (Recall how you used  /dev/uio)

The device file (/dev/xxx) is an interface to a character device. 

Steps:
1. Create a character device 
2. Create a device file



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device
int major_num;

int minor_num;

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

Audio 
CODEC

Userspace

Kernelspace

alloc_chrdev_region(dev_t * output, minor_start, count, MODULE_NAME)

irq



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device
int major_num;

int minor_num;

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

struct cdev cdev;probe(){
 …
 …
}

read(){
 …
 …
}

write(){
 …
 …
}

Audio 
CODEC

irq

Userspace

Kernelspace

cdev_init (struct cdev*, fops* {.read, .write, .seek})



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Character Device
(major, minor)

Device Device Device

Char.
Device

Char. 
Device

int major_num;

int minor_num;

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

read(){
 …
 …
}

write(){
 …
 …
}

Audio 
CODEC

irq

Userspace

Kernelspace

cdev_add (struct cdev*, dev_t, count)

struct cdev cdev;



User Code Needs to Talk to Driver

End Goal: Create a device file (/dev/xxx) that we can read() and write() 
to.   (Recall how you used  /dev/uio)

The device file (/dev/xxx) is an interface to a character device. 

Steps:
1. Create a character device 
2. Create a device file



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Character Device
(major, minor)

Device Device Device

Char.
Device

Char. 
Device

int major_num;

int minor_num;
struct class * class

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

struct cdev cdev;probe(){
 …
 …
}

read(){
 …
 …
}

write(){
 …
 …
}

Audio 
CODEC

irq

Userspace

Kernelspace

class_create(owner = THIS_MODULE, “my class name”)



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device File
(/dev/xxx)

Character Device
(major, minor)

Device Device Device

Char.
Device

Char. 
Device

int major_num;

int minor_num;
struct class * class

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

read(){
 …
 …
}

write(){
 …
 …
}

Audio 
CODEC

irq

Userspace

Kernelspace

read()
write()

device_create (struct class*, parent = NULL, dev_t, “your device name”)

Device 
File

Device 
File

struct cdev cdev;



What our driver needs to do:

• Be notified of hardware in the system (Milestone 1)
• Allow user code to talk to it (Milestone 1)
• Talk to the hardware (Milestone 2)
• Handle interrupts from the hardware (Milestone 2)



Driver needs to talk to the hardware

1. Need to figure out physical address

2. Need to reserve the physical address

3. Need to get a pointer (virtual address) to the physical address



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

Audio 
CODEC

Userspace

Kernelspace

int major_num;
struct class * class

read(){
 …
 …
}

write(){
 …
 …
}

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int minor_num;

read()
write()

Device 
File

Device 
File

struct cdev cdev;

irq



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

phys_addr_t phys_addr;

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

physical addr
Audio 

CODEC

Userspace

Kernelspace

platform_get_resource(struct plaform_device * dev, IORESOURCE_MEM, 0);

int major_num;
struct class * class

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int minor_num;

read()
write()

Device 
File

Device 
File

struct cdev cdev;

irq

read(){
 …
 …
}

write(){
 …
 …
}



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

phys_addr_t phys_addr;

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

physical addr
Audio 

CODEC

Userspace

Kernelspace

request_mem_region(phys_addr, size, MODULE_NAME);

int major_num;
struct class * class

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int minor_num;

read()
write()

Device 
File

Device 
File

struct cdev cdev;

irq

read(){
 …
 …
}

write(){
 …
 …
}



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

physical addr
Audio 

CODEC

Userspace

Kernelspace

virt_addr = ioremap(phys_addr, size);

int major_num;
struct class * class

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int minor_num;

read()
write()

Device 
File

Device 
File

struct cdev cdev;

irq

read(){
 …
 …
}

write(){
 …
 …
} u32* virt_addr;

phys_addr_t phys_adr;



Driver needs to talk to the hardware

1. Need to figure out physical address

2. Need to reserve the physical address

3. Need to get a pointer (virtual address) to the physical address

4. Talk to the hardware with:
• iowrite32 (value, virt_addr + offset)
• ioread32(virt_addr + offset)



Driver Needs to Handle Interrupts



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

physical addr
Audio 

CODEC

irq

Userspace

Kernelspace
Device File

(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int major_num;

u32* virt_addr;

phys_addr_t phys_adr;

int minor_num;
struct class * class

struct cdev cdev;read(){
 …
 …
}

write(){
 …
 …
}

read()
write()

Device 
File

Device 
File



Driver Needs to Handle Interrupts

1. Get IRQ Number

2. Register Interrupt Handler with Linux



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

physical addr
Audio 

CODEC

irq

Userspace

Kernelspace

irq = platform_get_resource(struct platform_device * dev, IORESOURCE_IRQ, 0);

int irq;

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int major_num;

u32* virt_addr;

phys_addr_t phys_adr;

int minor_num;
struct class * class

struct cdev cdev;read(){
 …
 …
}

write(){
 …
 …
}

read()
write()

Device 
File

Device 
File



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device Device Device

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

probe(){
 …
 …
}

isr(){
 …
 …
}

physical addr
Audio 

CODEC

irq

Userspace

Kernelspace

request_irq(irq, isr, IRQ_NO_FLAGS, MODULE_NAME, void*)

Device File
(/dev/xxx)

Character Device
(major, minor)

Char.
Device

Char. 
Device

int major_num;

u32* virt_addr;

phys_addr_t phys_adr;

int minor_num;
struct class * class

struct cdev cdev;read(){
 …
 …
}

write(){
 …
 …
}

read()
write()

int irq;

Device 
File

Device 
File



Driver Needs to Handle Interrupts

1. Get IRQ Number

2. Register Interrupt Handler with Linux



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device File
(/dev/xxx)

Character Device
(major, minor)

Device Device Device

Char.
Device

Char. 
Device

int major_num;

u32* virt_addr;

phys_addr_t phys_adr;

int minor_num;
struct class * class

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

struct cdev cdev;probe(){
 …
 …
}

read(){
 …
 …
}

write(){
 …
 …
}

isr(){
 …
 …
}

Audio 
CODEC

irq

Userspace

Kernelspace

read()
write()

int irq;

Device 
File

Device 
File



One last thing…



Application Code 
(Space Invaders)

Kernel Module

FPGA

ARM CPU

Switches ButtonsAudio Controller

Device File
(/dev/xxx)

Character Device
(major, minor)

Device Device Device

Char.
Device

Char. 
Device

int major_num;

u32* virt_addr;

phys_addr_t phys_adr;

int minor_num;
struct class * class

Platform Driver (compatible = “byu,ecen427-audio_codec”, .probe, .remove)

struct cdev cdev;

probe(){
 …
 …
}

read(){
 …
 …
}

write(){
 …
 …
}

isr(){
 …
 …
}

I2C
physical addr

Audio 
CODEC

irq

Userspace

Kernelspace

read()
write()

int irq;

Device 
File

Device 
File

Before you actually send data to the CODEC chip, you need to configure it via I2C.  I have 
provided you with a userspace library to do this.  Run it before loading your driver.


	Linux Driver for Audio
	What our driver needs to do:
	Slide Number 3
	What our driver needs to do:
	Slide Number 5
	Slide Number 6
	What our driver needs to do:
	User Code Needs to Talk to Driver
	Slide Number 9
	Slide Number 10
	Slide Number 11
	User Code Needs to Talk to Driver
	Slide Number 13
	Slide Number 14
	What our driver needs to do:
	Driver needs to talk to the hardware
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Driver needs to talk to the hardware
	Driver Needs to Handle Interrupts
	Slide Number 23
	Driver Needs to Handle Interrupts
	Slide Number 25
	Slide Number 26
	Driver Needs to Handle Interrupts
	Slide Number 28
	Slide Number 29
	Slide Number 30

