
LDD3, Ch1
ECEN 427



Why do we care about writing device drivers?

“There are a number of reasons to be interested in the writing of Linux device drivers. 
The rate at which new hardware becomes available (and obsolete!) alone guarantees 
that driver writers will be busy for the foreseeable future. Individuals may need to know 
about drivers in order to gain access to a particular device that is of interest to them. 
Hardware vendors, by making a Linux driver available for their products, can add the 
large and growing Linux user base to their potential markets. And the open source nature 
of the Linux system means that if the driver writer wishes, the source to a driver can be 
quickly disseminated to millions of users.”

(page 1)



Mechanism vs Policy

As a programmer, you are able to make your own choices about your driver, and choose an acceptable trade-
off between the programming time required and the flexibility of the result. Though it may appear strange to 
say that a driver is “flexible,” we like this word because it emphasizes that the role of a device driver is 
providing mechanism, not policy. 

The distinction between mechanism and policy is one of the best ideas behind the Unix design. Most 
programming problems can indeed be split into two parts: “what capabilities are to be provided” (the 
mechanism) and “how those capabilities can be used” (the policy). If the two issues are addressed by 
different parts of the program, or even by different programs altogether, the software package is much easier 
to develop and to adapt to particular needs.

The floppy driver is policy free—its role is only to show the diskette as a continuous array of data blocks. 
Higher levels of the system provide policies, such as who may access the floppy drive, whether the drive is 
accessed directly or via a filesystem, and whether users may mount filesystems on the drive. Since different 
environments usually need to use hardware in different ways, it’s important to be as policy free as possible.

(Pages 2-3)



What is the distinction between mechanism and policy?

When writing drivers, a programmer should pay particular attention to this 
fundamental concept: write kernel code to access the hardware, but don’t force 
particular policies on the user, since different users have different needs. The driver 
should deal with making the hardware available, leaving all the issues about how to 
use the hardware to the applications. A driver, then, is flexible if it offers access to 
the hardware capabilities without adding constraints.

(Page 3)



• What is synchronous vs asynchronous operation?
• What is concurrency? What sort of issues might arise when trying to make a concurrent 

driver?

Policy-free drivers have a number of typical characteristics. These include support for both synchronous and 
asynchronous operation, the ability to be opened multiple times, the ability to exploit the full capabilities of the 
hardware, and the lack of software layers to “simplify things” or provide policy-related operations. Drivers of 
this sort not only work better for their end users, but also turn out to be easier to write and maintain as well. 

…The actual driver design should be a balance between many different considerations. For instance, a single 
device may be used concurrently by different programs, and the driver programmer has complete freedom to 
determine how to handle concurrency…One major consideration is the trade-off between the desire to present 
the user with as many options as possible and the time you have to write the driver, as well as the need to keep 
things simple so that errors don’t creep in.

(Page 3)



The Kernel

In a Unix system, several concurrent processes attend to different tasks. Each process 
asks for system resources, be it computing power, memory, network connectivity, or 
some other resource. The kernel is the big chunk of executable code in charge of 
handling all such requests. Although the distinction between the different kernel tasks 
isn’t always clearly marked, the kernel’s role can be split (as shown in Figure 1-1) into 
the following parts:

(Page 4)



The Kernel

Process management 

The kernel is in charge of creating and destroying processes and handling their connection to the 
outside world (input and output). Communication among different processes (through signals, pipes, 
or interprocess communication primitives) is basic to the overall system functionality and is also 
handled by the kernel. In addition, the scheduler, which controls how processes share the CPU, is part 
of process management. More generally, the kernel’s process management activity implements the 
abstraction of several processes on top of a single CPU or a few of them.

Memory management 

The computer’s memory is a major resource, and the policy used to deal with it is a critical one for 
system performance. The kernel builds up a virtual addressing space for any and all processes on top 
of the limited available resources. The different parts of the kernel interact with the memory-
management subsystem through a set of function calls, ranging from the simple malloc/free pair to 
much more complex functionalities.



The Kernel

Filesystems

Unix is heavily based on the filesystem concept; almost everything in Unix can be treated as a 
file. The kernel builds a structured filesystem on top of unstructured hardware, and the 
resulting file abstraction is heavily used throughout the whole system. In addition, Linux 
supports multiple filesystem types, that is, different ways of organizing data on the physical 
medium. For example, disks may be formatted with the Linux-standard ext3 filesystem, the 
commonly used FAT filesystem or several others.

Device control 

Almost every system operation eventually maps to a physical device. With the exception of the 
processor, memory, and a very few other entities, any and all device control operations are 
performed by code that is specific to the device being addressed. That code is called a device 
driver. The kernel must have embedded in it a device driver for every peripheral present on a 
system, from the hard drive to the keyboard and the tape drive. This aspect of the kernel’s 
functions is our primary interest in this book.



The Kernel

Networking

Networking must be managed by the operating system, because most network operations are not specific 
to a process: incoming packets are asynchronous events. The packets must be collected, identified, and 
dispatched before a process takes care of them. The system is in charge of delivering data packets across 
program and network interfaces, and it must control the execution of programs according to their 
network activity. Additionally, all the routing and address resolution issues are implemented within the 
kernel.



• What are the 5 responsibilities of the kernel?



Loadable Modules

One of the good features of Linux is the ability to extend at runtime the set of features offered by the 
kernel. This means that you can add functionality to the kernel (and remove functionality as well) while 
the system is up and running. 

Each piece of code that can be added to the kernel at runtime is called a module. 

The Linux kernel offers support for quite a few different types (or classes) of modules, including, but 
not limited to, device drivers. 

Each module is made up of object code (not linked into a complete executable) that can be dynamically 
linked to the running kernel by the insmod program and can be unlinked by the rmmod program.

(Page 5)



1. Character devices 
A character (char) device is one that can be accessed as a stream of bytes (like a file); a 
char driver is in charge of implementing this behavior. Such a driver usually implements at 
least the open, close, read, and write system calls. 
The text console (/dev/console) and the serial ports (/dev/ttyS0 and friends) are examples of 
char devices, as they are well represented by the stream abstraction. 
Char devices are accessed by means of filesystem nodes, such as /dev/tty1 and /dev/lp0. 
The only relevant difference between a char device and a regular file is that you can always 
move back and forth in the regular file, whereas most char devices are just data channels, 
which you can only access sequentially. 
There exist, nonetheless, char devices that look like data areas, and you can move back 
and forth in them; for instance, this usually applies to frame grabbers, where the 
applications can access the whole acquired image using mmap or lseek.

(Page 6)

3 Classes of Devices



2. Block devices 
Like char devices, block devices are accessed by filesystem nodes in the /dev directory. 
A block device is a device (e.g., a disk) that can host a filesystem. 
In most Unix systems, a block device can only handle I/O operations that transfer one or 
more whole blocks, which are usually 512 bytes (or a larger power of two) bytes in length. 
Linux, instead, allows the application to read and write a block device like a char device—it 
permits the transfer of any number of bytes at a time. 
As a result, block and char devices differ only in the way data is managed internally by 
the kernel, and thus in the kernel/driver software interface. Like a char device, each block 
device is accessed through a filesystem node, and the difference between them is 
transparent to the user. Block drivers have a completely different interface to the kernel than 
char drivers.

(Page 7)



3. Network interfaces 
Any network transaction is made through an interface, that is, a device that is able to exchange 
data with other hosts. Usually, an interface is a hardware device, but it might also be a pure 
software device, like the loopback interface. A network interface is in charge of sending and 
receiving data packets, driven by the network subsystem of the kernel, without knowing how 
individual transactions map to the actual packets being transmitted. Many network connections 
(especially those using TCP) are stream-oriented, but network devices are, usually, designed 
around the transmission and receipt of packets. A network driver knows nothing about individual 
connections; it only handles packets. 

Not being a stream-oriented device, a network interface isn’t easily mapped to a node in the 
filesystem, as /dev/tty1 is. The Unix way to provide access to interfaces is still by assigning a 
unique name to them (such as eth0), but that name doesn’t have a corresponding entry in the 
filesystem. Communication between the kernel and a network device driver is completely 
different from that used with char and block drivers. Instead of read and write, the kernel calls 
functions related to packet transmission.

(Page 7)


	LDD3, Ch1
	Slide Number 2
	Mechanism vs Policy
	Slide Number 4
	Slide Number 5
	The Kernel
	The Kernel
	The Kernel
	The Kernel
	Slide Number 10
	Loadable Modules
	3 Classes of Devices
	Slide Number 13
	Slide Number 14

