
LDD3, Ch 2
ECEN 427





While most small and medium-sized applications perform a single task from 
beginning to end, every kernel module just registers itself in order to serve future 
requests, and its initialization function terminates immediately. In other words, the 
task of the module’s initialization function is to prepare for later invocation of the 
module’s functions; it’s as though the module were saying, “Here I am, and this is 
what I can do.” The module’s exit function (hello_exit in the example) gets invoked 
just before the module is unloaded. It should tell the kernel, “I’m not there anymore; 
don’t ask me to do anything else.” 

This kind of approach to programming is similar to event-driven programming, 
but while not all applications are event-driven, each and every kernel module is. 
Another major difference between event-driven applications and kernel code is in 
the exit function: whereas an application that terminates can be lazy in releasing 
resources or avoids clean up altogether, the exit function of a module must 
carefully undo everything the init function built up, or the pieces remain around 
until the system is rebooted.



Incidentally, the ability to unload a module is one of the features of 
modularization that you’ll most appreciate, because it helps cut down 
development time; you can test successive versions of your new driver 
without going through the lengthy shutdown/reboot cycle each time.



• https://github.com/torvalds/linux

• https://elixir.bootlin.com/linux/latest/source

• uname –r

• https://elixir.bootlin.com/linux/v5.4/source
•

Kernel Source Code

https://github.com/torvalds/linux
https://elixir.bootlin.com/linux/latest/source
https://elixir.bootlin.com/linux/v5.4/source


As a programmer, you know that an application can call functions it doesn’t 
define: the linking stage resolves external references using the appropriate 
library of functions. printf is one of those callable functions and is defined in 
libc. A module, on the other hand, is linked only to the kernel, and the only 
functions it can call are the ones exported by the kernel; there are no 
libraries to link to. The printk function used in hello.c earlier, for example, is 
the version of printf defined within the kernel and exported to modules. It 
behaves similarly to the original function, with a few minor differences, the 
main one being lack of floating-point support.

Because no library is linked to modules, source files should never include 
the usual header files, <stdarg.h> and very special situations being the only 
exceptions.

Libraries





• cd kernel/helloworld
• sudo insmod helloworld.ko
• dmesg
• lsmod
• sudo rmmod helloworld
• dmesg



The role of the operating system, in practice, is to provide programs with a consistent view 
of the computer’s hardware. In addition, the operating system must account for 
independent operation of programs and protection against unauthorized access to 
resources. This nontrivial task is possible only if the CPU enforces protection of system 
software from the applications.

Every modern processor is able to enforce this behavior. The chosen approach is to 
implement different operating modalities (or levels)in the CPU itself. The levels have 
different roles, and some operations are disallowed at the lower levels; program code can 
switch from one level to another only through a limited number of gates. Unix systems are 
designed to take advantage of this hardware feature, using two such levels. 
All current processors have at least two protection levels, and some, like the x86 family, 
have more levels; when several levels exist, the highest and lowest levels are used. Under 
Unix, the kernel executes in the highest level (also called supervisor mode), where 
everything is allowed, whereas applications execute in the lowest level (the so-called user 
mode), where the processor regulates direct access to hardware and unauthorized access 
to memory.

User Space and Kernel Space



We usually refer to the execution modes as kernel space and user space. These terms 
encompass not only the different privilege levels inherent in the two modes, but also the fact 
that each mode can have its own memory mapping—its own address space—as well.

Unix transfers execution from user space to kernel space whenever an application issues a 
system call or is suspended by a hardware interrupt. Kernel code executing a system call is 
working in the context of a process—it operates on behalf of the calling process and is able 
to access data in the process’s address space. Code that handles interrupts, on the other 
hand, is asynchronous with respect to processes and is not related to any particular 
process.

User Space and Kernel Space



What are the different segments of memory where your program and it’s data are stored?

1.

2.

3.

4.

330 Review



Applications are laid out in virtual memory with a very large stack area. The 
stack, of course, is used to hold the function call history and all automatic 
variables created by currently active functions. The kernel, instead, has a 
very small stack; it can be as small as a single, 4096-byte page. Your 
functions must share that stack with the entire kernel-space call chain. Thus, 
it is never a good idea to declare large automatic variables; if you need 
larger structures, you should allocate them dynamically at call time.

Kernel Stack



Often, as you look at the kernel API, you will encounter function names 
starting with a double underscore (__). Functions so marked are generally a 
low-level component of the interface and should be used with caution. 
Essentially, the double underscore says to the programmer: “If you call this 
function, be sure you know what you are doing.”

__Names



Kernel code cannot do floating point arithmetic. Enabling floating point would 
require that the kernel save and restore the floating point processor’s state 
on each entry to, and exit from, kernel space—at least, on some 
architectures. Given that there really is no need for floating point in kernel 
code, the extra overhead is not worthwhile.

Floating Point



“Error recovery is sometimes best handled with the goto statement. We normally hate to use 
goto, but in our opinion, this is one situation where it is useful.”

Error Handling





User Space vs Kernel Space



The advantages of user-space drivers are:
• The full C library can be linked in. The driver can perform many exotic tasks without 

resorting to external programs (the utility programs implementing usage policies that are 
usually distributed along with the driver itself).

• The programmer can run a conventional debugger on the driver code without having to go 
through contortions to debug a running kernel.

• If a user-space driver hangs, you can simply kill it. Problems with the driver are unlikely to 
hang the entire system, unless the hardware being controlled is really misbehaving. 

• User memory is swappable, unlike kernel memory. An infrequently used device with a 
huge driver won’t occupy RAM that other programs could be using, except when it is 
actually in use. 

• A well-designed driver program can still, like kernel-space drivers, allow concurrent 
access to a device. 

• If you must write a closed-source driver, the user-space option makes it easier for you to 
avoid ambiguous licensing situations and problems with changing kernel interfaces.

User space vs Kernel Drivers



But the user-space approach to device driving has a number of drawbacks. The 
most important are: 

• Interrupts are not available in user space. 
• Direct access to memory is possible only by mmapping /dev/mem, and only a privileged 

user can do that. 
• Access to I/O ports is available only after calling ioperm or iopl. Moreover, not all platforms 

support these system calls, and access to /dev/port can be too slow to be effective. Both 
the system calls and the device file are reserved to a privileged user.

• Response time is slower, because a context switch is required to transfer information or 
actions between the client and the hardware. 

• Worse yet, if the driver has been swapped to disk, response time is unacceptably long. 
Using the mlock system call might help, but usually you’ll need to lock many memory 
pages, because a user-space program depends on a lot of library code. mlock, too, is 
limited to privileged users. 

• The most important devices can’t be handled in user space, including, but not limited to, 
network interfaces and block devices.

User space vs Kernel Drivers


	LDD3, Ch 2
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Kernel Source Code
	Libraries
	Slide Number 7
	Slide Number 8
	User Space and Kernel Space
	User Space and Kernel Space
	330 Review
	Kernel Stack
	__Names
	Floating Point
	Error Handling
	Slide Number 16
	User Space vs Kernel Space
	User space vs Kernel Drivers
	User space vs Kernel Drivers

